spark-redis入门教程

Hadoop 同时被 2 个专栏收录
6 篇文章 0 订阅
10 篇文章 0 订阅

本文是我翻译自redis官方网站文章,英文作者是Itamar Harber。

Spark-Redis是用Spark在redis上面进行读写数据操作的包。其支持redis的所有数据结构:String(字符串), Hash(哈希), List(列表), Set and Sorted Set(集合和有序集合)。此模块既可以用于Redis的standalone模式,也可用于集群情况。此外,Spark-Redis还提供了对Spark-Streaming的支持。

简介

本文概括了开始使用Apache Spark和Redis所需的基本步骤。关于Spark和Redis的安装暂不介绍。我们将使用“WORD COUNT”为例,来介绍Spark,Redis和spark-redis的联合使用。

Redis实验室最近于2015年9月发布了spark-redis package。显而易见,根据它的名字,这是一个为Apache Spark提供Redis连接的连接件,它允许人们对Redis的数据结构在Spark中以RDD(弹性分布式数据集,Spark的专门术语。)的结构形式进行操作。

自从Spark开源以来,由于其针对大规模数据处理的高效且通用的引擎(轻松的超过了之前只能在单一平台上面操作的大数据平台),很快吸引了开发者们的注意。Spark采用了循环数据流和内存计算,使得其比Hadoop的MapReduce速度快了很多倍。由于Spark的易用性和SQL,Streaming以及Mlib等库的扩展,吸引了开发人员的眼球。

Redis将共享内存的架构(shared in-memory infrastructure)引入到Spark中,这使得Spark处理数据的速度又快了几个数量级。此外,Redis的数据结构简化了数据的获取和处理,使代码复杂度下降,并节省了网络通信和带宽的消耗。

因此,两者的结合,可以实现大规模数据量的实时处理任务。提速幅度有多大?如果Redis和Spark结合使用,结果证明,处理数据(以时间序列数据为例)的速度比Spark单单使用进程内存堆外缓存来存储数据要快45倍――不是快45%,而是快整整45倍!

配置

  • Apache Spark
  • Scala
  • Jedis
  • Redis

最低标准:
Apache Spark v1.4.0
Scala v2.10.4
Jedis v2.7
Redis v2.8.12 or v3.0.3


Example(Word Count计数器)

下面,我们使用word count例子来开始介绍Spark-Redis的使用。

Step 1:读取数据

这里,我们将对Redis源代码文件进行Word Count统计,希望得出一些有趣的结论。当上面配置好以后,我们运行:
这里写图片描述

注意:$ bin/spark-shell --jars <path-to>/spark-redis-<version>.jar,<path-to>/jedis-<version>.jar
需要在–jars 后面加上这两个jar包。

在这里,输入:
这里写图片描述

wtext.count = 100

表示有100个Redis的源文件。当然,你也可以用ls -l redis/src/*.[ch] | wc -l 来统计文件个数。但是通过WholeTextFileRDD的方式,可以看出job的划分stage和完成的情况。

Step 2:改变文件内容

接下来,是将文件变成一个个单词。相比于普遍使用的TextFileRDD,WholeTextFileRDD返回一个key-value型的结构数据。key对应的是每个文件的path;value对应的是文件的内容。
下面是WholeTextFileRDD的代码。

/** 
   * Read a directory of text files from HDFS, a local file system (available on all nodes), or any 
   * Hadoop-supported file system URI. Each file is read as a single record and returned in a 
   * key-value pair, where the key is the path of each file, the value is the content of each file. 
   * 
   * <p> For example, if you have the following files: 
   * {{{ 
   *   hdfs://a-hdfs-path/part-00000 
   *   hdfs://a-hdfs-path/part-00001 
   *   ... 
   *   hdfs://a-hdfs-path/part-nnnnn 
   * }}} 
   * 
   * Do `val rdd = sparkContext.wholeTextFile("hdfs://a-hdfs-path")`, 
   * 
   * <p> then `rdd` contains 
   * {{{ 
   *   (a-hdfs-path/part-00000, its content) 
   *   (a-hdfs-path/part-00001, its content) 
   *   ... 
   *   (a-hdfs-path/part-nnnnn, its content) 
   * }}} 
   * 
   * @note Small files are preferred, large file is also allowable, but may cause bad performance. 
   * @note On some filesystems, `.../path/*` can be a more efficient way to read all files 
   *       in a directory rather than `.../path/` or `.../path` 
   * 
   * @param path Directory to the input data files, the path can be comma separated paths as the 
   *             list of inputs. 
   * @param minPartitions A suggestion value of the minimal splitting number for input data. 
   */  
  def wholeTextFiles(  
      path: String,  
      minPartitions: Int = defaultMinPartitions): RDD[(String, String)] = withScope {  
    assertNotStopped()  
    val job = NewHadoopJob.getInstance(hadoopConfiguration)  
    // Use setInputPaths so that wholeTextFiles aligns with hadoopFile/textFile in taking  
    // comma separated files as input. (see SPARK-7155)  
    NewFileInputFormat.setInputPaths(job, path)  
    val updateConf = job.getConfiguration  
    new WholeTextFileRDD(  
      this,  
      classOf[WholeTextFileInputFormat],  
      classOf[Text],  
      classOf[Text],  
      updateConf,  
      minPartitions).map(record => (record._1.toString, record._2.toString)).setName(path)  
  }  

值得注意的是:① wholeTextFiles对于大量的小文件效率较高,大文件效果不太好。
② 一些文件系统的路径名采用通配符的形式效果比一个一个文件名添加上去更高效。

将文件变成(文件名:单词)的形式。(变量的名称:wtext代表WholeTextFiles, fwd代表FileWords。):
这里写图片描述

当fwds这个RDD将文件名和单词清楚的分开之后,我们就准备好进行词频统计了。在此之前,先对所有文件的单词进行汇总,进行一个整体的词频统计。这里写图片描述

其结果为:
这里写图片描述

Step 3:将RDD写到Redis中

从这步开始,我们就开始使用到非常6的Redis了!我们将用Redis存储这个结果,以供后续计算使用。Redis的有序集合对词频统计(单词:出现次数)场景特别适合,既可以根据单词找到单词的出现次数,也可以通过单词的出现次数找到符合要求的单词。

实现这个只需要一行代码!!!
这里写图片描述

一旦数据存放到Redis中,我们可以使用命令行操作:

这里写图片描述

Step 4:从Redis中读取RDD

相较于从Redis写数据,更常见的场景是从Redis中读数据。运行下面的代码,使得每一个文件的词频统计汇总起来变成一个总的输出。

这里写图片描述

用spark-shell进行操作,获取全部单词的个数(包括重复的内容)。

这里写图片描述

闭注(Closing Notes)

当数据量小的时候,我们统计单词个数可以用wc -w来实现。随着数据量的增大,需要找到新的方法来抽象解答方式并增加方法的灵活性和可扩展性。Spark是一个让人兴奋的大数据处理工具。更别说其和Hadoop生态系统耦合,并有诸如SQL,streaming,Mlib等扩展包。
Redis的出现,可以说是为Spark“ 解了渴“。spark-redis
通过简单的几行代码,将RDD和Redis的核心数据结构迅速互换。spark-redis包已经提供了直接的方式将RDD和redis的结构进行互换,并提供了友好的方式来获取key的名字。此外,连接件还通过将RDD分区转换成Redis的hash slot,有效的减少了引擎内部shuffling操作。

最后,这个开源的连接件还在不断的发展中,将来有可能会被spark设置成默认组件。

参考(References)

1、RedisLabs/Spark-Redis
2、飞一般的感觉!当Spark遇到Redis~
3、spark-redis (homepage)

  • 2
    点赞
  • 0
    评论
  • 8
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值